

NANO-ENGINEER YOUR FUTURE

Ref: PLASTICYL[™] PP2001 – 5 November 2009 – V07

PLASTICYL[™] PP2001 / Product Data Sheet

General Information

Description

PLASTICYLTM is a family of Multi-Wall Carbon Nanotube (MWNT) thermoplastic concentrates for applications requiring superior electrical conductivity and electrostatic discharge (ESD) properties. PLASTICYLTM PP2001 is a conductive masterbatch based on polypropylene. Because of its low viscosity and high flow formulation, PLASTICYLTM PP2001 is ideal for standard injection molding and extrusion processes.

Applications

- ESD (Electrostatic Discharge) and electrically conductive parts
- E&E, automotive, industrial
- Injection molding, extrusion

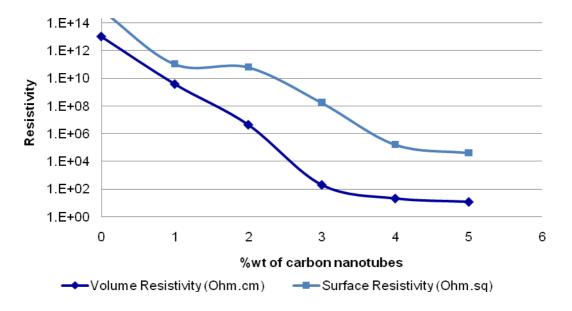
Benefits

- · Electrical conductivity at low loading
- Retention of key mechanical properties
- Easier processing

Main Characteristics

CARBON NANOTUBES LOADING (%WT)	REAL DENSITY (G/L) ISO 1183	MELT FLOW INDEX (G/10 MIN)	MELTING POINT (°C) ISO 11357-1,-3	
20 ± 1,0	872	Not measurable	165	

PLASTICYL[™] PP2001 / Product Data / Page 2


Typical Performance after Injection Molding

				AFTER DILUTION TO:			
PROPERTIES	STANDARD	UNITS	NEAT POLY- PROPYLENE	1 ‰ _T OF CNT	2 ‰ _{WT} OF CNT	3,2 % _{WT} OF CNT	5 ‰ _T OF CNT
Volume resistivity	CTM E043	Ohm.cm	1,10 ¹³	3,10 ⁹	4,10 ⁶	2,10 ²	1,10 ¹
Surface resistivity	CTM E042	Ohm.sq	1,10 ¹⁵	1,10 ¹¹	6,10 ¹⁰	1,10 ⁸	4,10 ⁴
Young's Modulus	ISO 527-1,2	MPa	1280	1625	1728	1795	1954
Tensile strength at break	ISO 527-1,2	MPa	28,2	33,2	35,5	36,8	38,2
Strain at break	ISO 527-1,2	%	520	436	154	64	16
Charpy notched impact strength	ISO 180	kJ/m²	2,4	3,0	3,2	3,0	2,4
Melt flow index	ISO 1133:1997	g/10 min	12,0	9,8	5,6	3,2	1,1
Melting point	ISO 11357- 1,-3	€	-	-	-	-	-
Burning behavior	UL 94	Class	-	-	-	-	-

N.B.: Compounds were processed using an L/D ratio and a 48 twin-screw extruder under proprietary conditions.

PLASTICYL[™] PP2001 / Product Data / Page 3

Percolation Curves for Volume and Surface Resistivity

N.B.: Electrical resistivity measurement in accordance to CTM E043 and CTM E402 (Cabot Testing Method), on standard injection molded IZOD specimens.

Disclaimer

This information is intended to be used only as a guideline for designers and users of modified thermoplastics. All information is believed to be accurate but is given without acceptance of liability. Users should make their own assessment of the suitability of the product for the purposes required. Properties may be materially affected by extrusion and molding parameters as well as by the shape and size of the part. No information supplied by Nanocyl constitutes a warranty regarding the product performance.

For technical assistance, sales or further information, please contact us: